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ABSTRACT. This study is a partial replication of L. Hu and P. M. Bentler’s (1999)
fit criteria work. The purpose of this study was twofold: (a) to determine whether
cut-off values vary according to which model is the true population model for a
dataset and (b) to identify which of 13 fit indexes behave optimally by retaining all
of the correct models while simultaneously rejecting all of the misspecified models in
a manner invariant across sample size and data distribution. The authors found that
for most indexes the results do not vary depending on which model serves as the cor-
rect model. Furthermore, the search for an optimal cut-off value led to a new dis-
covery about the nature of McDonald’s measure of centrality and the root mean
square error of approximation. Unlike all other indexes considered in this study, the
cut-off value of both indexes actually decreases for incorrect models as sample size
increases. This may suggest that power calculations are more likely to be optimal
when based on those indices.
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THE APPLICATION OF STRUCTURAL EQUATION MODELING (SEM) re-
quires a researcher to evaluate how well a model fits sample data. Although many
fit indexes have been developed (Fan & Sivo, 2005), the indexes are by no means
parallel. In fact, the variety of indexes available complicates model evaluation. In
addition to not having directly comparable scales or distributions, different fit in-
dexes address different aspects of model appropriateness (e.g., parsimony, sam-
ple size effects, comparisons to null models).

The issue of how to determine the propriety of models has not been resolved
(Marsh, Hau, & Wen, 2004). Cudeck and Henly (1991) pointed out that assess-
ment of model fit will always have an aspect of statistical decision making that
cannot be totally reduced to numbers. Despite this truism, there is still a need for
some clear guiding principles regarding model fit assessment.

Much of the research concerning model fit has used Monte Carlo studies in
which data are simulated to investigate the performance of fit indexes (e.g., Fan,
Thompson, & Wang, 1999; Gerbing & Anderson, 1993; Hu & Bentler, 1999;
Marsh, Balla, & McDonald, 1988; McDonald & Marsh, 1990; Mulaik et al.,
1989). One goal that Monte Carlo researchers in SEM have sought is the devel-
opment of well-defined “rules of thumb” for assessing model appropriateness.
The lack of comparability of different fit indexes caused by their discrepant func-
tioning (Fan et al.), the effects of sample size on fit index functioning (Marsh et
al.), and, to some extent, the inherent inability of a structural model to exactly ac-
count for the phenomena it seeks to describe (Tanaka, 1993) make the develop-
ment of a rule of thumb for dichotomous fit or no-fit decisions difficult. With
these problems in mind, Hu and Bentler undertook developing rules of thumb for
fit criteria.

Hu and Bentler’s (1999) approach to studying the criterion problem was to de-
sign a Monte Carlo study considering a variety of indexes under different data
conditions (sample size, variate independence, and distributional assumptions).
The seven data conditions investigated by Hu and Bentler had been identified in
earlier work as affecting the behavior of statistical tests (Hu, Bentler, & Kano,
1992). In addition, Hu and Bentler’s examination of two-index strategies for as-
sessing model fit was an important step toward addressing the problem that fit in-
dexes may or may not provide complementary results.

Hu and Bentler’s (1999) results led them to make suggestions for using the
combination of two indexes to identify misspecified models and about tentative
cut-off criteria of fit indexes for assessing model fit. Although Hu and Bentler
were able to make several specific suggestions, the extent to which their findings
are generalizable beyond the correct and misspecified model conditions used in
their study is questionable. As Gerbing and Anderson (1993) have pointed out, the
variability of potential structural models makes designing a generalizable Monte
Carlo study difficult, but clearly there is a need for such a study, as noted by Marsh
et al. (2004) and Fan and Sivo (2005). The possibility that fit index cut-off crite-
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ria may vary depending on the specific correct and misspecified models consid-
ered in a study needs to be studied. In the search for optimal cut-off criteria of fit
indexes, both the cut-off values needed for retaining correct models and those
needed for rejecting misspecified models should be considered simultaneously.

The purpose of this study was twofold: (a) to determine whether cut-off val-
ues vary depending on which model serves as the correct model, and (b) to iden-
tify which of 13 fit indexes behave optimally in terms of both retaining the cor-
rect models and simultaneously rejecting the misspecified models in a manner
invariant across sample size and data distribution. We pursued four specific re-
search questions in this study. As a partial replication of Hu and Bentler’s (1999)
study, we considered the original correct models used in that study and some al-
ternative correct models similar to their models. Although we could have con-
sidered a set of correct models entirely different from those in Hu and Bentler’s
study, we chose to examine a family of models relevant to their study. It is our
position that this is logically the first necessary step prior to the consideration of
alternative models as we intend to focus on the generalizability of Hu and
Bentler’s conclusions. With this in mind, we considered the following research
questions:

Questions for Correct Models

1. Do the fit indexes show consistent behavior across different but correctly
specified models?

2. What are the highest possible fit index values (the lowest for the root mean
residual [RMRY], the standardized root mean square residual [SRMR], and the root
mean square error of approximation [RMSEA]) not resulting in the rejection of
any correct models, with respect to different sample size and data distribution
conditions?

3. Do sample size and data distribution interact to affect the maximum cut-off
values possible for correctly specified models?

Question for Misspecified Models

4. What are the lowest possible fit index values (the highest for RMR, SRMR,
and RMSEA) resulting in the rejection of all misspecified models, with respect to
different sample size and data distribution conditions?

Method

We retained the basic model structure in Hu and Bentler’s (1999) study in the
current study. As such, we investigated the behaviors of the fit indexes of inter-
est across two categories of confirmatory factor analysis models. Hu and Bentler
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defined the first category as the simple model, in which each manifest variable
served as an indicator of only 1 latent factor. The correct simple model had 3 cor-
related latent factors and 15 manifest variables. Each latent factor had 5 manifest
variables as its indicators. Two misspecified simple models were created by spec-
ifying as zeros 1 or 2 covariances among the latent factors.

Hu and Bentler (1999) defined the second category as the complex model,
which had 3 correlated latent factors and 15 manifest variables. In the correct
complex model, however, 2 manifest variables served as indicators for 2 latent
factors simultaneously (i.e., “double loading”). Two misspecified complex mod-
els were created by specifying 1 or 2 double-loading indicators to be single-load-
ing indicators.

In the current study, we used the same six models (i.e., three simple and three
complex models) defined in Hu and Bentler (1999); however, we employed a
fully crossed design in which each of the three simple and three complex mod-
els served as the correct model, and the other models were used as misspecified
models (as long as the condition of underparameterization was satisfied). In this
way, the number of correct and misspecified models fitted and analyzed was
greatly increased.

Models

Both the simple and complex models contained 15 manifest variables and 3 la-
tent factors. The factor pattern matrix (see Thompson, 2004) for the three simple
models was the same, as shown (transposed):

70 70 .75 .80 .80 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .70 .70 .75 .80 .80 .00 .00 .00 .00 .00 |.

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .70 .70 .75 .80 .80
The residual variances of all manifest variables in the simple models were spec-
ified in such a way so that all the manifest variables had unit variance under nor-
mality conditions (see Hu & Bentler, 1999, and Hu et al., 1992, for more details

about the models and data conditions). The three simple models differed in their
respective factor covariance matrices (i.e., ¢ matrix) shown as follows:

1
Simple 1: | .50 1 ;
.40 .30 1

Simple 2: | .00 1 ;
40 30 1
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1
Simple 3: | .00 1
.00 30 1

The complex models had the same factor covariance matrix as Simple Model
1, but the complex models differed from each other in their factor pattern matri-
ces. The transposed factor pattern matrices for the three complex models were as
follows:

70 70 75 .80 .80 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Complex 1:/.00 .00 .00 .70 .00 .70 .70 .75 .80 .80 .00 .00 .00 .00 .00 |.
70 .00 .00 .00 .00 .00 .00 .00 .70 .00 .70 .70 .75 .80 .80

Complex Models 2 and 3 differed by the number of factors for which the first and
fourth manifest variables were specified as indicators, as follows:

.70 .70 .75 80 .80 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Complex 2:/.00 .00 .00 .70 .00 .70 .70 .75 .80 .80 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .70 .00 .70 .70 .75 .80 .80

and

70 70 .75 80 .80 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Complex 3: |.00 .00 .00 .00 .00 .70 .70 .75 .80 .80 .00 .00 .00 .00 .00 |.
.00 .00 .00 .00 .00 .00 .00 .00 .70 .00 .70 .70 .75 .80 .80

In the three complex models, the residual variances were specified in such a way
so that all but three manifest variables had unit variances under normality condi-
tions. The first, fourth, and ninth variables (i.e., the variables with multiple pat-
tern coefficients) were given unique variances of .51, .36, and .36, respectively.

The four questions were intended to focus on the most restrictive index cut-off
limits for correct models and on the least restrictive index cut-off limits for mis-
specified models. The emphasis on index cut-off limits is meant to delimit this
study. Questions concerning the empirical distributions of these indexes are out-
side the purview of this inquiry. Identification of cut-off limits under the condi-
tions of this study requires the single-minded focus on the absolute limits. There-
fore, in this study, we did not consider other relevant issues, such as setting the
cut-off boundary so that, say, 5% of the correct models would be rejected. More-
over, setting the cut-off boundary to 5% creates the illusion that 5% of the cor-
rect models are actually being rejected when, in fact, a 5% cut-off boundary is an
artifact of the parametric conditions chosen for the design of this particular sim-
ulation study.

It was desirable to find the highest possible cut-off value (the lowest for RMR,
SRMR, and RMSEA) not resulting in the rejection of any of the correct models.



272 The Journal of Experimental Education

These cut-off values are best disposed to reject as many incorrect models as pos-
sible without rejecting any correct models. Conversely, it was also desirable to
find the lowest possible cut-off value (the highest for RMR, SRMR, and RMSEA)
resulting in the rejection of all incorrect (misspecified) models. These cut-off val-
ues are best disposed to reject as few correct models as possible while rejecting
all incorrect models.

In this study, underparameterized models are nested under correct models, and
correct models may be nested under overparameterized models. Hu and Bentler
(1999) noted that overparameterized models have zero population noncentrality.
For this reason, we excluded overparameterized models from any of the correct
model conditions. Table 1 shows the different models considered in this study.

To fit a correct model, sample data were generated based on the model para-
meters of a model in Column 1 (e.g., Simple Model 1; S1), and then the same
model (i.e., S1) was fitted to its own sample data. To fit a misspecified (under-
parameterized) model, sample data were generated based on the model parame-
ters of a model in Column 1 (e.g., Simple Model 1; S1), and the corresponding
underparameterized models listed in Column 2 (i.e., Simple Models 2 and 3)
were fitted to the sample data generated from Simple Model 1. The overparame-
terized models in Column 3, however, were not used in our study.

Data Generation

Each condition in this study was replicated 200 times and under 6 sample
sizes (150, 250, 500, 1,000, 2,500, and 5,000). In addition, data were generat-

TABLE 1. Correct, Underparameterized (Misspecified), and
Overparameterized Models

then the and the
If the correctly specified underparameterized overparameterized
(true) model is (misspecified) models are models are

Simple Model 1 (S1)
Simple Model 2 (S2)

Simple Model 3 (S3)
Complex Model 1 (C1)
Complex Model 2 (C2)

Complex Model 3 (C3)

Models S2 and S3
Model S3

No models

Models S1, S2, S3, C2,
and C3

Models S1, S2, S3,
and C3

Models S1, S2, and S3

Models C1, C2, and C3

Models S1, C1, C2, and
C3

Models S1, S2, C1, C2,
and C3

No models

Model Cl1

Models C1 and C2
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ed under seven conditions of data distribution (SAS Institute, 1991). In Con-
dition 1, factor scores and errors were distributed multivariate normal. Condi-
tions 2 and 3 required the factors to deviate from normal kurtosis, whereas in
Condition 3 the nonnormal factors and errors were independent. The kurtosis
of the three factors in Conditions 2 and 3 was —1.0, 2.0, and 5.0. The kurtosis
of the unique variates was adjusted to —1.0, 0.5, 2.5, 4.5, 6.5, -1.0, 1.0, 3.0,
5.0,7.0,-0.5,1.5,3.5,5.5, and 7.5 to help create Conditions 2 through 4. Con-
ditions 5 through 7 required that the factors and error variates be divided by a
random variable equal to [}2(5)]°3/3%3. In Condition 5, the data were distrib-
uted elliptically with the factors and errors being uncorrelated but dependent.
In Condition 6, the errors alone were distributed elliptically with the factors
and errors being uncorrelated but dependent. In Condition 7, the factors and
errors were multivariate normal, whereas the factors and errors were uncorre-
lated but dependent (see Hu et al., 1992). For a better understanding of the
procedures used for data generation, see Fan, Felsovalyi, Sivo, and Keenan
(2002).

The sample data were generated with each of the 6 models (Column 1 in Table
1) used as a correct model. Both the correct model (i.e., the model used for data
generation) and the corresponding (underparameterized) misspecified models
(Column 2 in Table 1) were then fitted to the sample data. This resulted in ob-
taining fit statistics for 6 correct models (Column 1 in Table 1) and 15 misspec-
ified models (Column 2 in Table 1). This methodology resulted in 176,400 repli-
cations [21 (6 correct + 15 misspecified) models x 6 sample sizes x 7 data
distribution conditions X 200 replications per cell].

Fit Statistics

We examined how 13 popular fit indexes responded to the conditions de-
scribed. Several of these indexes have been studied ad nauseum, but they have
not been studied within the context similar to the current design, nor for the
reasons motivating this investigation. The indexes considered include the good-
ness-of-fit index (GFI), adjusted goodness-of fit-index (AGFI), comparative fit
index (CFI), Tucker—Lewis Index (TLI) or non-normed index (NNFI; Bentler
& Bonett, 1980; Tucker & Lewis, 1973), normed fit index (NFI), Bollen’s
Normed Index Rhol (Bollen, 1986), Bollen’s Non-normed Index Delta2
(Bollen, 1989), McDonald’s Measure of Centrality (Mc; McDonald & Hart-
man, 1990; McDonald & Marsh, 1992), parsimonious goodness-of-fit index
(PGFI), parsimonious normed fit index (PNFI), RMR, SRMR, and RMSEA.

Many readily available publications describe the calculations and considera-
tions for each of the indexes used in this study. We assume that the reader has
foreknowledge of these indexes. A quick overview of many of the indexes con-
sidered in this study may be found in Marsh et al. (1988).
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Results

The results are organized according to the four research questions.

Questions for Correct Models

Question 1: Do the fit indexes show consistent behavior across different but cor-
rectly specified models? We conducted a 6 X 6 X 7 (Correct Model Type x Sam-
ple Size x Data Condition) factorial analysis of variance (ANOVA) to examine
the sensitivity of fit indexes to different factors (model types, sample size, data
conditions) for correctly specified models. For each fit index, with 200 replica-
tions per cell condition, a total of 50,400 index values were available in each fac-
torial ANOVA.

The ANOVAs showed that, when there was no model misspecification (i.e.,
correct models alone considered), fit index values were statistically different (at
o = .05) across model types for the following fit indexes: GFI, AGFI, CFI, NFI,
RMR, SRMR, Bollen’s Rhol, PGFI, and PNFI. Nevertheless, the effect size mea-
sures (n? in Table 2) reveal that these statistical differences across model types
are largely the result of statistical power. The actual fit index value differences
across model types on inspection were negligible, except for the two parsimo-
nious indexes (PGFI and PNFI), because the proportions of variation of fit index
values contributed by model types were minimal (close to 0%). Indeed, inspec-
tion of the mean fit index values (not presented) suggests that differences occur
across model types only to the thousandth place. It should be noted that differ-
ences in SRMR values may not be negligible, with 4% of its variation explained
by model types. Notably, the PGFI and PNFI fit values were influenced by model
types, accounting for 36% of the variation in PGFI values and 27% of the varia-
tion in PNFI values. This suggests that the penalty function in these parsimonious
fit indexes was not consistent across the models examined in the study.

Question 2: What are the highest possible fit index values (the lowest for RMR,
SRMR, and RMSEA) not resulting in the rejection of any correct models, with
respect to different sample size and data distribution conditions? For correctly
specified models, the cut-off point considered as optimal for fit indexes are the
highest values (the lowest for RMR, SRMR, and RMSEA) at which 100% of the
correct models will be retained (i.e., no Type I error). For misspecified models,
these values maximize the chances of rejecting the misspecified models (i.e.,
minimizing Type II error). Analyses (Table 2) showed that data distribution con-
ditions had minimal and negligible effect on the values of fit indexes. For this
reason, we will ignore data distribution conditions and will focus strictly on sam-
ple size conditions.

Table 3 presents the highest values of the fit indexes (the lowest for RMR,
SRMR, and RMSEA) that would not result in the rejection of any correct models.
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TABLE 3. Optimal Index Value Obtained Without Rejecting Any Correct
Models

Sample size

Fit index 150 250 500 1,000 2,500 5,000
GFI .89 .93 .96 98 .99 .99
AGFI .87 91 95 97 .99 .99
CFI .95 97 98 .99 .99 .99
NNFI .95 97 98 .99 .99 .99
NFI .88 92 .96 98 .99 .99
Mc .87 92 .96 98 .99 .99
Rhol .87 91 95 97 .99 .99
Delta2 .96 97 98 .99 .99 .99
PGFI 72 5 7 18 79 79
PNFI 72 75 7 78 79 79
RMR .14 12 11 a1 .07 .05
SRMR 12 .10 .07 .05 .03 .03
RMSEA .06 .05 .03 .03 .02 .01

Notes. The results displayed are across all six models fitted to their own data 200 times under
each condition. High values indicate better model fit for all except the 3 indexes at the bot-
tom (RMR, SRMR, and RMSEA). GFI = goodness-of-fit index; AGFI = adjusted goodness-
of-fit index; CFI = comparative fit index: NNFI = non-normed fit index; NFI = normed fit
index; Mc = McDonald’s Measure of Centrality; Rhol = Bollen's Normed Index; Delta2 =
Bollen's Non-normed Index; PGFI = parsimonious goodness-of-fit index; PNFI = parsimo-
nious normed fit index; RMR = root mean square residual; SRMR = standardized RMR;
RMSEA = root mean square error of approximation.

The findings suggest that optimal cut-off values (for correct models only) may
vary considerably depending on sample size, with smaller sample size resulting
in lower optimal cut-off values. For example, at the lower end of sample size (N
= 150), the optimal value of GFI for not rejecting correct models is about .90, and
it may increase to .99 for the very large sample size condition (e.g., N = 2,500).
For RMSEA, the optimal value is around .06 for small sample size (N = 150) and
may decrease to .02 for very large sample size condition (N = 2,500).

Table 3 also shows that the optimal values should probably be different for
some indexes even though they may appear to be on a comparable scale. For ex-
ample, CFI, NNFI, and Bollen’s Delta2 values for correct models are around .95
for the very small sample condition (N = 150), higher than some other indexes
such as Rhol, Mc, and NFI.

Question 3: Do sample size and data distribution interact to affect the maximum
cut-off values possible for correctly specified models? We examined the interac-
tion effects obtained from the previous factorial ANOVA (see Table 2). Before re-



Sivo, Fan, Witta, & Willse 277

TABLE 4. Mean Fit Index Values for Correct Models, by Sample Size

Sample size

Fit index 150 250 500 1,000 2,500 5,000
GFI 928 .955 977 988 995 997
AGFI .900 938 .968 984 993 .996
CFI 993 .996 998 999 .999 999
NNFI .995 998 999 .999 999 .999
NFI 923 953 976 988 995 997
Mc .988 .995 998 999 .999 999
Rhol .907 943 971 985 994 997
Delta2 .996 998 .999 999 999 .999
PGFI 764 187 .805 814 .820 821
PNFI 760 185 .804 813 .819 .821
RMR 051 .039 .027 019 .012 .008
SRMR .070 .054 .038 .027 .017 012
RMSEA 017 011 .007 .005 .003 .002

Notes. The results displayed are across all six models fitted to their own data 200 times under
each condition. High values indicate better model fit for all except the 3 indexes at the bot-
tom (RMR, SRMR, and RMSEA). GFI = goodness-of-fit index; AGFI = adjusted goodness-
of-fit index; CFI = comparative fit index: NNFI = non-normed fit index; NFI = normed fit
index; Mc = McDonald’s Measure of Centrality; Rhol = Bollen's Normed Index; Delta2 =
Bollen's Non-normed Index; PGFI = parsimonious goodness-of-fit index; PNFI = parsimo-
nious normed fit index; RMR = root mean square residual; SRMR = standardized RMR;
RMSEA = root mean square error of approximation.

porting any of the interaction effect results, however, it is useful to note for which
fit indexes the effect of sample size was found, because the effect of sample size
was by far the most prominent contributor to the variation of various fit indexes
(see Table 2) for the correctly specified models. The results for all fit indexes
were affected by sample size to a statistically significant degree (p < .0001), al-
though the effect sizes varied greatly. Based on the 1?2 results alone, NNFI, Mc,
and Bollen’s Delta2 were the least affected, with sample size accounting for only
4% of the variation in the respective fit index values. Results for CFI suggest that
23% of the variation in CFI values may be explained by the sample size condi-
tions considered. Although this percentage is sizeable, consultation of the actual
mean values by sample size presented in Table 4 is more informative. It may be
seen that the differences in CFI values by sample size are found in the thousandth
place, so sample size influences are in reality negligible. Inspection of the means
in Table 4 also suggests that sample size has a negligible impact on CFI and
RMSEA in addition to the previously mentioned NNFI, Mc, and Bollen’s Delta2.

Table 2 presents the four interaction results for the fit indexes: (a) Model x



278 The Journal of Experimental Education

Sample Size, (b) Model x Data Condition, (c) Sample Size x Data Condition, and
(d) Model x Sample Size x Data Condition. The results reveal that, in general,
the interactions explain a miniscule and negligible amount of variation in fit in-
dexes, even though some of them are statistically significant.

When considering the mean index values for correct models (shown in Table 4),
in each of the five model comparison scenarios, the average fit index value for the
correct model was consistently larger than those of the misspecified models con-
sidered as rival hypotheses. An optimal finding for any index, in this case, would be
one in which the mean fit index value of the correct model is much more discrepant
from the mean fit index value of the misspecified models. This information is pre-
sented in Table 5. A review of discrepancies between the correct and misspecified
model index mean values suggests that more obvious discrepancy is observed for
Mc, SRMR, and RMSEA, suggesting that these indexes may do a better job at both
retaining the true model and rejecting the misspecified models.

Question for Misspecified Models

Question 4: What are the lowest possible fit index values (the highest for RMR,
SRMR, and RMSEA) resulting in the rejection of all misspecified models, with
respect to different sample size and data distribution conditions? Optimal cut-off
values for fit indexes are the lowest (highest for RMR, SRMR, and RMSEA) val-
ues needed to reject 100% of all misspecified models (no Type II error), and such
optimal values minimize the chances of rejecting correct models (i.e., minimiz-
ing Type I error). Table 6 presents these values for fitting misspecified models
(S1 and S3; see Table 1) to data generated from Simple Model 1.

A review of these values in Table 6 is not very consoling. Sample size affects
all index cut-off values and notably not in the same way across all fit indexes.
Sample size raises the optimal cut-off value in some cases and lowers it in other
cases, depending on the index under consideration. Moreover, indexes that were
shown to be affected minimally by sample size require a cut-off value so high
that their purportedly impervious stance in the face of sample size (NNFI, Mc,
Delta2, CFI,; see Table 2) may be nothing more than a ceiling effect; sample size
cannot affect the cut-off value when the fit value has to be so high to reject all in-
correct models in the first place. McDonald’s Measure of Centrality is useful in
rejecting incorrect models when the sample size is set to 500 or greater. Con-
versely, for GFI, AGFI, NFI, and Rhol, the required cut-off values for rejecting
all incorrect models are lower for smaller sample size conditions. These results
suggest that sample size has a differential effect on optimal cut-off values of fit
indexes for rejecting misspecified models. Because fit indexes generally do not
exceed 1.00, cut-off values near 1.00 for rejecting a misspecified model are dis-
concerting. The .95 cut-off for Mc is sufficient when the sample size is set to 500.
Considering that the lowest possible cut-off value without rejecting a correct
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TABLE 6. Optimal Index Value for Rejecting All Misspecified Models Fitted
to Simple Model 1 Data

Sample size

Fit index 150 250 500 1,000 2,500 5,000
GFI 94 .96 97 98 98 98
AGFI 92 94 .96 97 97 97
CFI 1.0 1.0 99 98 .98 98
NNFI 1.0 1.0 .99 98 98 97
NFI .93 .95 .96 97 98 98
Mc 1.0 98 95 94 .93 92
Rhol 92 94 .96 97 97 97
Delta2 1.0 1.0 .99 98 98 .98
PGFI 79 .81 .82 .82 .83 .83
PNFI 78 .80 .81 .82 .82 .82
RMR .02 .03 .03 .02 .02 .02
SRMR 12 .14 15 .16 .16 17
RMSEA .00 .02 .03 .04 .04 .04

Notes. High values indicate better model fit for all except the 3 indexes at the bottom (RMR,
SRMR, and RMSEA). GFI = goodness-of-fit index; AGFI = adjusted goodness-of-fit index;
CFI = comparative fit index: NNFI = non-normed fit index; NFI = normed fit index; Mc =
McDonald’s Measure of Centrality; Rhol = Bollen's Normed Index; Delta2 = Bollen's Non-
normed Index; PGFI = parsimonious goodness-of-fit index; PNFI = parsimonious normed fit
index; RMR = root mean square residual; SRMR = standardized RMR; RMSEA = root mean
square error of approximation.

model (see Table 3; with cut-offs increasing as sample size increases) was the
same for Mc and other indexes, it becomes clear that Mc performs best for larg-
er sample size conditions (at least 500 in this study).

Are the results for other correct model conditions (Simple Model 2, Complex
Models 1, 2, and 3; see Table 1) similar to those in Table 6? Tables 7 through 10
show these results for the misspecified models fitted to data generated from other
correct models (Simple Model 2, Complex Models 1, 2, and 3; see Table 1). A
close look at Tables 7 through 10 shows that, in terms of the differential effect of
sample size on the choice of cut-off values, the results are similar to those observed
in Table 6. In terms of the possible cut-off value needed to reject all misspecified
models, the cut-off value varies depending on which model’s data are of concern.

For the three indexes for which a lower value indicates better model fit, all
model data indicated that for RMSEA and RMR the needed cut-off value would
be very low (see Tables 6 and 7). SRMR, on the other hand, is capable of ruling
out misspecified models with a rather high cut-off value (higher than the con-
ventional .05) for the underparameterized simple models (those misspecified
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TABLE 7. Optimal Index Value for Rejecting All Misspecified Models Fitted
to Simple Model 2 Data

Sample size

Fit index 150 250 500 1,000 2,500 5,000
GFI 95 97 98 98 .99 .99
AGFI 93 95 97 98 98 98
CFI 1.0 1.0 1.0 .99 .99 .99
NNFI 1.0 1.0 1.0 .99 .99 .99
NFI 94 .96 98 98 .99 .99
Mc 1.0 1.0 .99 97 .96 .96
Rhol 93 .95 .96 98 .98 98
Delta2 1.0 1.0 1.0 .99 .99 .99
PGFI .80 .82 .83 .83 .84 .84
PNFI .80 81 .83 .83 .84 .84
RMR .01 .02 .01 .01 .01 .02
SRMR .08 .09 .10 A1 12 12
RMSEA .00 .00 .01 .02 .03 .03

Notes. High values indicate better model fit for all except the 3 indexes at the bottom (RMR,
SRMR, and RMSEA). GFI = goodness-of-fit index; AGFI = adjusted goodness-of-fit index;
CFI = comparative fit index: NNFI = non-normed fit index; NFI = normed fit index; Mc =
McDonald’s Measure of Centrality; Rhol = Bollen's Normed Index; Delta2 = Bollen's Non-
normed Index; PGFI = parsimonious goodness-of-fit index; PNFI = parsimonious normed fit
index; RMR = root mean square residual; SRMR = standardized RMR; RMSEA = root mean
square error of approximation.

models fitted to data from Simple Models 1 and 2). This suggests that the SRMR
is sensitive to misspecification in the measurement model components (misspec-
ification in factor pattern matrix), a result different from the conclusion by Hu
and Bentler (1999) that SRMR was more sensitive to misspecification in struc-
tural model components (e.g., misspecification in factor covariance matrix).
Moreover, the .05 criterion for the SRMR is sufficient across sample size condi-
tions, unlike other fit indexes for which a higher value indicates better model fit.

Discussion

Hu and Bentler (1999) conducted a Monte Carlo study to find the optimal cri-
teria for fit indexes used in applied SEM research. The generalizability of Hu and
Bentler’s findings, however, may be uncertain without replication involving more
model conditions. Our study, for this reason, included more model conditions by
(a) allowing all of Hu and Bentler’s misspecified models to have a turn as a cor-
rect model (in addition to their correct models) and (b) fitting Hu and Bentler’s
complex models to all simple model datasets and vice versa (Hu and Bentler did
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TABLE 8. Optimal Index Value for Rejecting All Misspecified Models Fitted
to Complex Model 1 Data

Sample size

Fit index 150 250 500 1,000 2,500 5,000
GFI 92 94 95 .95 .96 .96
AGFI .87 91 92 93 .94 .94
CFI 98 98 97 97 .96 .96
NNFI 98 97 .96 .96 .95 .95
NFI 92 94 95 .96 .96 .96
Mc 92 .89 .87 .85 .84 .83
Rhol .90 92 94 .94 .95 .95
Delta2 98 98 97 97 .96 .96
PGFI 74 .76 7 77 78 18
PNFI 75 .76 7 a7 8 18
RMR .02 .02 .02 .02 .02 .02
SRMR .07 .07 .07 .07 .07 .07
RMSEA .04 .05 .05 .06 .06 .06

Notes. High values indicate better model fit for all except the 3 indexes at the bottom (RMR,
SRMR, and RMSEA). GFI = goodness-of-fit index; AGFI = adjusted goodness-of-fit index;
CFI = comparative fit index: NNFI = non-normed fit index; NFI = normed fit index; Mc =
McDonald’s Measure of Centrality; Rhol = Bollen's Normed Index; Delta2 = Bollen's Non-
normed Index; PGFI = parsimonious goodness-of-fit index; PNFI = parsimonious normed fit
index; RMR = root mean square residual; SRMR = standardized RMR; RMSEA = root mean
square error of approximation.

not make these comparisons). In the end, the purpose of this study was twofold:
(a) to determine whether optimal fit index cut-off values vary according to which
model serves as the correct model, and (b) to identify which fit indexes behave op-
timally by both retaining all correct models while simultaneously rejecting all
misspecified models in a manner invariant across sample size and data distribu-
tion. To accomplish both purposes, we generated data conforming to all paramet-
ric and model conditions heretofore mentioned, and then we endeavored to answer
four research questions instrumental in focusing our analysis on both purposes.

Model Invariance for Correct Models

The analytical results obtained for Question 1 supported our first purpose: de-
termining whether optimal fit index cut-off values vary according to which model
serves as the correct model. For this analysis only, we included the data generated
for correct (true) models in the analysis. If the indexes perform in a model invari-
ant manner, then fit results would be the same regardless of which model is the cor-
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TABLE 9. Optimal Index Value for Rejecting All Misspecified Models Fitted
to Complex Model 2 Data

Sample size

Fit index 150 250 500 1,000 2,500 5,000
GFI 92 94 95 .95 .95 .95
AGFI .89 91 93 .93 .93 .93
CFI .99 98 97 97 .96 .96
NNFI .99 97 97 .96 .96 .95
NFI 93 94 95 .96 .96 .96
Mc .95 91 .89 .87 .86 .85
Rhol 91 93 94 .95 .95 .95
Delta2 .99 98 97 97 .96 .96
PGFI 5 7 78 18 78 18
PNFI .76 a7 78 79 79 79
RMR .01 .01 .01 .01 .01 .01
SRMR .06 .06 .05 .05 .05 .05
RMSEA .03 .04 .05 .05 .06 .06

Notes. High values indicate better model fit for all except the 3 indexes at the bottom (RMR,
SRMR, and RMSEA). GFI = goodness-of-fit index; AGFI = adjusted goodness-of-fit index;
CFI = comparative fit index: NNFI = non-normed fit index; NFI = normed fit index; Mc =
McDonald’s Measure of Centrality; Rhol = Bollen's Normed Index; Delta2 = Bollen's Non-
normed Index; PGFI = parsimonious goodness-of-fit index; PNFI = parsimonious normed fit
index; RMR = root mean square residual; SRMR = standardized RMR; RMSEA = root mean
square error of approximation.

rect model. Our results favorably confirmed that the actual fit index value differ-
ences across model types were negligible, except for two parsimonious indexes
(PGFI and PNFI) and perhaps SRMR. PGFI and PNFI values were influenced by
model types, accounting for 36% of the variation in PGFI values and 27% of the
variation in PNFI values. This suggests that the penalty function in these parsimo-
nious fit indexes favor some correct models more than other correct models.
Results for the parsimony indexes are perhaps more academic, however, because
these models are seldom used in applied SEM research. With respect to SRMR fit
values, discrepancies among results for correct models may need to be studied fur-
ther given that SRMR is widely used and that 4% of the variation in SRMR is ex-
plained in our study by which model happened to be designated as correct.

Optimal Cut-Off Values for Correct Models

The analytical results obtained for Questions 2, 3, and 4 supported our second
purpose: identifying which fit indexes behave optimally in terms of both retaining
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TABLE 10. Optimal Index Value for Rejecting All Misspecified Models
Fitted to Complex Model 3 Data

Sample size

Fit index 150 250 500 1,000 2,500 5,000
GFI 91 93 94 .95 .95 .95
AGFI .87 .90 92 92 .93 93
CFI 97 .96 95 .95 .94 94
NNFI 97 .95 94 94 .93 .93
NFI .93 94 95 .96 .96 .96
Mc .90 .87 .84 .82 .81 .80
Rhol .87 .90 92 92 .93 .93
Delta2 97 .96 .96 .95 .94 .94
PGFI .76 7 78 18 79 79
PNFI 75 .76 7 8 8 8
RMR .02 .02 .01 .01 .02 .02
SRMR .08 .08 .07 .07 .08 .08
RMSEA .05 .05 .06 .06 .07 .07

Notes. High values indicate better model fit for all except the 3 indexes at the bottom (RMR,
SRMR, and RMSEA). GFI = goodness-of-fit index; AGFI = adjusted goodness-of-fit index;
CFI = comparative fit index: NNFI = non-normed fit index; NFI = normed fit index; Mc =
McDonald’s Measure of Centrality; Rhol = Bollen's Normed Index; Delta2 = Bollen's Non-
normed Index; PGFI = parsimonious goodness-of-fit index; PNFI = parsimonious normed fit
index; RMR = root mean square residual; SRMR = standardized RMR; RMSEA = root mean
square error of approximation.

all of the correct models while simultaneously rejecting all of the misspecified
models in a manner that is invariant across both sample size and data distribution.
The results for Question 2 were used to evaluate the most stringent cut-offs
possible for the indexes without rejecting any of the correct models across sam-
ple size and data distribution conditions. Taken into consideration along with
Question 3, five conclusions may be drawn from the results of both questions.

Sample size. First, just as fit indexes are affected by sample size, optimal cut-off val-
ues (for correct models only) vary considerably depending on sample size, with
smaller sample sizes resulting in lower optimal cut-off values. If our interest is to
retain all correct models (i.e., no Type I error) while maximizing the chances of re-
jecting misspecified models (i.e., minimizing Type II error), then the cut-off values
for all indexes could become more stringent as sample size increases from 150 to
5,000 (see Table 3). This result suggests that larger sample sizes offer more preci-
sion in identifying the correct (i.e., true) model. This finding suggests that, regard-
less of which index is under consideration, the cut-off values may need to become
less rigorous as sample size decreases, so that we could retain all correct models
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while maximizing the chance of rejecting the incorrect models as rival hypotheses.
Although this may seem obvious, it is important to address because the propriety of
conventional cut-off values (either .90 or .95) irrespective of the fit index considered
is questionable at certain sample sizes (see Table 3). To determine whether it may
be meritorious to use a higher cut-off value under the condition of a larger sample
size, or a lower cut-off value under the condition of a smaller sample size, it is im-
portant to consider jointly the results for the misspecified model (Question 4).

Second, a corollary conclusion based on the findings reported in Table 3 would
be that cut-off values for indexes, otherwise appearing to be on a comparable
scale, may well require very different optimal cut-off values. A .95 cut-off may
be too high for some indexes when sample size is 150, yet it may be appropriate
for other indexes. Therefore, the recommendation of .95 for any class of indexes
may be inappropriate, ignoring the issue of sample size.

Third, a review of the mean fit index results for correct models in Table 4 re-
veals that, at least for the conditions considered in this study, certain indexes have
the attribute of allowing correct models to be retained under very stringent cut-
off values even when sample size is small (N = 150): CFI, NNFI, Mc, RMSEA,
and Delta2.

Parsimonious indexes. A fourth conclusion is that the concept of optimal values
may not apply to the parsimonious indexes (PGFI and PNFI), because their val-
ues are primarily influenced by model degrees of freedom. If this is the case, then
no standard for these indexes exists, rendering these indexes as not interpretable
for applied research. It may be argued that the applied researcher’s interpretation
of an index must have some standard by which to gauge the magnitude of that
index. Consider just how wildly the PGFI and PNFI fit values varied depending
on which model happened to be correct (see Table 2).

Interaction. Fifth, the results reveal that, in general, the interactions explain a
miniscule and negligible amount of variation in fit indexes, even though some of
them are statistically significant. Table 2 presents the four interaction results for
the fit indexes: (a) Model x Sample Size, (b) Model x Data Condition, (c) Sam-
ple Size x Data Condition, and (d) Model x Sample Size x Data Condition.

Optimal Cut-Off Values for Incorrect Models

The results for Question 4 presented in Tables 6 through 10 were used to ex-
amine the least stringent needed cut-off values to reject all incorrect (misspeci-
fied) models. The objective was to find the least stringent cut-off values possible
by which all misspecified models could be rejected (no Type II error, while min-
imizing Type I error).

An interesting and previously unreported finding for index behavior emerged in
this study, revealing itself across Tables 6 through 10 on careful review of the op-
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timal cut-off values for rejecting incorrect models. To appreciate this finding, it
first must be recalled that one of the fundamental limitations of fit indexes is their
reported sensitivity to sample size, where, as sample size increases, the index val-
ues increase as well. Many fit indexes developed as a solution to this problem have
evidenced sensitivity to sample size. In this study, this was indeed true when the
results for the correct models were examined in response to Question 1.

Sample Size: New and Encouraging Results for McDonald’s Measure
of Centrality and RMSEA

It turns out, however, that when incorrect (misspecified) models were fitted to
another model’s data, 3 of the 13 indexes showed an advantageous pattern of
change as sample size increased, a favorable sensitivity to sample size. As sam-
ple size increased, the needed cut-off values to reject all incorrect (misspecified)
models considered in this study actually decreased for 3 indexes. The cut-off val-
ues for all other indexes predictably increased with sample size, whereas Mc,
SRMR, and RMSEA decreased. Unlike other indexes that would require more
stringent cut-off values for rejecting all misspecified models as sample size in-
creased, the Mc, SRMR, and RMSEA required less stringent cut-off values as
sample size increased, an obviously positive finding for these 3 indexes.

For example, whereas GFI, AGFI, CFI, NNFI, NFI, Rhol, and Delta2 changed
very little or in some cases increased as sample size increased, the cut-off value
for Mc rapidly drops in Tables 6 through 10, suggesting that it is getting easier
to reject all misspecified models. Recall that in Table 3, for retaining all correct
models, the needed cut-off value gets larger with the increase of sample size.
This is a desirable finding because it is more likely to locate a realistic cut-off
value that performs well in both retaining the correct models and rejecting the in-
correct models. A similar pattern is found for both SRMR and RMSEA when Ta-
bles 6 and 7 are examined (keep in mind that these two indexes have the oppo-
site direction compared with Mc) and in Tables 8 through 10 (Hu and Bentler’s
complex models) for RMSEA. Curiously, SRMR, however, discontinues this de-
sirable performance under the condition of structural misspecification (see Ta-
bles 8—10 for complex models).

Taking this finding into consideration, it is also encouraging that the same
three indexes (Mc, SRMR, RMSEA) showed a more obvious mean index value
discrepancy between correct and incorrect models (see Table 5), suggesting that
these indexes may do the best job in aiding an applied researcher in distinguish-
ing correct and incorrect (misspecified) models.

A related inference may be that the results for Mc and RMSEA suggest that
power calculations are more likely to be optimal when based on these indexes.
Consider that Kim (2005) derived power estimates using these indexes in addi-
tion to CFI and SRMR. This will require further investigation.
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Recommendations for Future Research

No one investigation into fit indexes can be designed to handle all legitimate
considerations simultaneously. In this way, the current study is no exception.
This study was designed to be a partial replication of Hu and Bentler’s (1999)
study but, as such, does not address a number of other worthwhile issues. One
plausible concern of the current investigation is whether the models chosen rep-
resent models in typical SEM applications. On the one hand, the models consid-
ered are not much different from confirmatory models in any one of a number of
investigations. On the other hand, there is such a wide array of models found in
SEM applications that it would be a mistake to rush to the conclusion that the
current findings are generalizable to all SEM applications. Although this study is
limited by the models we considered, it represents a necessary first step toward
answering the question of whether different results are obtained for different
models as motivated by Hu and Bentler’s findings. As a partial replication, it was
important to consider the models Hu and Bentler used, although alternative mod-
els must be considered in future follow-up studies.

In this study, we assume operationally that there are “correct” models (where
exact fit is possible) because, as a partial replication, we were required to share
certain assumptions made in Hu and Bentler’s (1999) study. For the purpose of
germane comparison, it was necessary for us to have “correct” models and “mis-
specified” models. However, SEM researchers usually consider models as useful
approximations, and this standpoint should motivate future studies in which all
models are misspecified but represent varying approximations of the “true”
process.

Another issue that must be considered is the situation in which two or more
models all fit equally well because they are mathematically equivalent. Clearly,
standard fit indexes, such as those considered in this study, are inadequate in
these cases because they are not designed to distinguish mathematically equiva-
lent models. Williams, Bozdogan, and Aiman-Smith (1996) discussed how in-
dexes such as the information complexity index are capable of distinguishing
mathematically equivalent models. It turns out, even when models are mathe-
matically equivalent, such indexes are capable of determining the degree to
which the equivalent models differ in terms of how information rich they are. The
area needs to be studied further as well.
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